Cite this: *Org. Biomol. Chem.,* 2012, **10**, 4782

<www.rsc.org/obc> **PAPER**

Porphyrin-based multi-signal chemosensors for Pb^{2+} and Cu^{2+} †

Yuting Chen^{a,b,c} and Jianzhuang Jiang^{*b,c}

Received 12th February 2012, Accepted 25th April 2012 DOI: 10.1039/c2ob25313e

Two metal-free tetra(aryl)porphyrin derivatives modified by one and four N,N-bis(2-pyridylmethyl)amino group(s), namely porphyrin-1-DPA (1) and porphyrin-4-DPA (2) respectively, have been designed, synthesized, and characterized. Binding with Pb^{2+} induces a significant change in their solution color and in the ratio of two absorption/fluorescence signal peaks, rendering them the first example of porphyrinbased triple-signal optical sensors for Pb^{2+} . Their dual-mode Cu^{2+} -selective sensing properties via either the porphyrin fluorescence ON–OFF mechanism or metal displacement from the $1-Pb^{2+}$ complex that results in a triple-signal change clearly reveals their potential application as excellent and versatile sensors. **Communistic Schemes Content Content**

Introduction

Chemosensors with high sensitivity and simplicity have attracted increasing interest in recent years. In particular, detecting heavy and transition metal (HTM) ions is important because of their extremely toxic impact on the environment and human health.¹ Various molecular optical sensors using electronic absorption, fluorescent emission, and/or colorimetric signals have been synthesized and applied to detect different species of HTM ions selectively including Pb^{2+} , Cu^{2+} , Hg^{2+} , and Cd^{2+} .² Most of the reports, however, focused on single-analyte chemosensors with few examples for multi-metal ions.³ Quinoline-based fluorescent sensors able to detect both Zn^{2+} and Cd^{2+} simultaneously via PET and ICT mechanisms, respectively, were developed by Jiang and co-workers.⁴ A styryl-Bodipy-based molecular logic sensor with multi-receptors for Zn^{2+} , Ca^{2+} , and Hg^{2+} was synthesized by Akkaya et al.⁵ Suzuki reported a "jewel pendant ligand" multi-analyte (Fe³⁺ and Cu^{2+}) chemosensor containing three chromogenic units.⁶ A small molecular probe for Zn^{2+} and Hg^{2+} based on self-assembly and a metal ion replacement mechanism was prepared by Yang et al .⁷ Very lately, Jiang and coworkers reported the first porphyrin-Bodipy FRET ratiometric sensor for Fe^{2+} and $Hg^{2+}.8$ However, a molecular optical sensor

for the simultaneous detection of the often co-existing Pb^{2+} and $Cu²⁺$ ions has not been reported thus far. As a result, developing a versatile molecular optical sensor for synchronously detecting these two metal ions is highly desirable.

The porphyrin chromophore is one of the most promising signaling units for constructing fluorescent sensors due to its advantageous photophysical characteristics, such as pronounced photostability, high extinction coefficient, and tunable fluorescence emission.⁹ The central tetrapyrrole moiety of this series of conjugated macrocyclic ligands is also able to act as a good functional receptor for various metal ions due to its strong coordinating ability. As a consequence, extensive investigations have been conducted into porphyrin-based fluorescent sensors.¹⁰ However, exploration of versatile molecular sensors with a porphyrin moiety acting as both the signal chromophore and a multi-analyte receptor has not yet been carried out, to the best of our knowledge.

In the present paper, two new porphyrin derivatives, namely 5-[p-N,N-bis(2-pyridylmethyl)amino-phenyl]-10,15,20-tris(4 tert-butylphenyl)porphyrin (Porphyrin-1-DPA) (1) and 5,10,15,20-tetra[p-N,N-bis(2-pyridylmethyl) amino-phenyl]porphyrin(Porphyrin-4-DPA) (2) were designed and synthesized, Scheme 1. In addition to the optical signaling role, the metalfree tetrapyrrole moiety in 1 and 2 functions as a versatile receptor for both Pb²⁺ and Cu²⁺, along with the peripheral N,N-bis(2pyridylmethyl)amine (DPA) unit(s). Interestingly, binding of these two porphyrin compounds with Pb^{2+} directly induced a color change visible to the naked eye and also a remarkable ratio signal change of two absorption–emission peaks. Thus, 1 and 2 are the first examples of porphyrin-based multi-signal optical sensors for Pb^{2+} . The dual-mode Cu^{2+} -selective approach was implemented in these two compounds via a porphyrin fluorescence ON–OFF mechanism and triple-signal metal displacement, revealing their versatile sensing nature.

^aKey Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Dezhou University, Dezhou 253023, China ^bDepartment of Chemistry, University of Science and Technology Beijing, Beijing 100083, China

c Department of Chemistry, Shandong University, Jinan 250100, China. E-mail: jianzhuang@ustb.edu.cn

[†]Electronic supplementary information (ESI) available: ¹H NMR and ¹³C NMR spectra of compounds **1, 1Zn**, and **2** in CDCl₃, MALDI-TOF mass spectra of these compounds, the electronic absorption and fluorescence emission spectra of 1 and 2, together with 1Zn upon addition of different metal ions in CH_2Cl_2 -MeOH $(1:1)$. See DOI: 10.1039/ c2ob25313e

Scheme 1 Synthesis of DPA-modified porphyrin derivatives 1, 1Zn, and 2.

Fig. 1 The electronic absorption spectra (A) and emission spectra (B) of 1 at the concentration of 2 μ M in CH₂Cl₂–MeOH (1 : 1) upon addition of Pb^{2+} and Cu²⁺, respectively, with an excitation of 420 nm.

Results and discussion

As shown in Scheme 1, the synthesis of porphyrin sensors 1 and 2 involved the prior generation of $5-(p$ -carboxylphenyl)-10,15,20-tris (4-tert-butylphenyl)porphyrin (3) and 5,10,15,20 $tetra(p-carboxylphenyl) porphyrin$ (5), respectively, in accordance with literature procedures.^{11–12} The compounds were refluxed in $S OCl₂$ and treated with DPA in THF. The zinc complex (1Zn) was obtained by reaction of the metal-free porphyrin 1 with zinc acetate in a mixed solvent of $CHCl₃$ and MeOH. These three compounds were characterized by MALDI-TOF mass and ${}^{1}H$ as well as ${}^{13}C$ NMR spectroscopy, Fig. S1-6 (ESI†).

To investigate the selectivity of the metal-free porphyrins for metal ions, the photophysical properties of 1 (2 μM) upon addition of different metal ions, such as Pb^{2+} , Fe^{2+} , Co^{2+} , Hg^{2+} , Mn^{2+} , Cu^{2+} , Zn^{2+} , Ni^{2+} , Cd^{2+} , Ca^{2+} , Ba^{2+} , Mg^{2+} , Li^+ , Na^+ , or K^+ (10 equiv.), were studied by UV–vis and fluorescence measurements in CH_2Cl_2 -MeOH (1 : 1). As shown in Fig. 1A, the intensity of the strongest absorption peak of metal-free porphyrin-1-DPA (1) at 417 nm significantly decreases upon addition of Pb^{2+} . A new peak simultaneously appears around 466 nm, resulting in the I_{466}/I_{417} ratio increasing from 0 to 1.32. Interestingly, the change in the electronic absorption spectrum of 1 upon addition of Pb^{2+} also induces an obvious solution color change from baby pink to light green, Fig. 1A. Meanwhile, a significant change also occurs in the fluorescent emission spectrum of 1 after addition of Pb^{2+} . The fluorescent emission intensity of 1 at 650 nm decreases significantly, while a new fluorescent emission peak appears at 604 nm, Fig. 1B. This leads to a change in the ratio of F_{604}/F_{650} from approximately 7576 to 0.26. In addition, the quantitative absorption titration experiments for 1 (2 μ M) in CH₂Cl₂–MeOH (1 : 1) with increasing amounts of Pb²⁺ (0–10 equiv.) indicate a 1 : 1.5 binding stoichiometry between 1 and Pb^{2+} . The approximate association constant (K_a) is 2.1 \times 10⁴, which is confirmed by the absorption Job plot and the fluorescent titration experiments, Fig. 2. This suggests a possible binding mode between 1 and Pb^{2+} in 1–Pb²⁺ system as depicted in Fig. S7A (ESI†). The detection limit for Pb²⁺ ions with 1 was determined to be 3.1×10^{-7} M under the present conditions.¹³ These results clearly reveal that the metalfree porphyrin-1-DPA 1 can be used for colorimetric and dual

Fig. 2 The electronic absorption (A) and fluorescent emission spectra (B) of 1 upon addition of increasing amounts (0, 0.2, 0.4, 0.6, 0.8, 0.9 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2, 4, 6, 8, and 10 equiv.) of Pb^{2+} , with an excitation of 420 nm. The inset in A shows the 1:1.5 binding stoichiometry between 1 and Pb^{2+} in the $1-Pb^{2+}$ system at the 466 nm absorption peak.

optical-ratiometric detection of Pb^{2+} . It represents the first triplesignal molecular optical sensor for this divalent heavy metal cation.¹⁴

Addition of Cu^{2+} quenches the fluorescent emission of 1 at 650 nm, but without significantly changing its electronic absorption spectrum, Fig. 1. A quantitative fluorescent titration of 1 with Cu^{2+} shows that the emission intensity at 650 nm gradually decreases to be almost quenched when the amount of Cu^{2+} is increased from 0 to approximately 2.0 equiv., Fig. 3A. Further increases in the amount of Cu^{2+} to 10 equiv. lead to almost no change in the emission spectrum. These results, together with the fluorescence emission Job plot (Fig. 3A), indicate a possible 1 : 2 binding model between 1 and Cu^{2+} with an approximate K_a of 7.4 \times 10⁵, Fig. S7B (ESI†). Interestingly, adding Cu²⁺ (10 equiv.) into a solution of $1-Pb^{2+}$ (Cu²⁺ : Pb²⁺ = 1 : 1) leads to a rapid color change from light green to baby pink as viewed by the naked eye, Fig. 3B. Electronic absorption spectroscopic measurements confirmed the change from $1-Pb^{2+}$ to $1-Cu^{2+}$ with the disappearance of the absorption peak at 466 nm and appearance of the absorption peak at 414 nm, Fig. 3B. This suggests the displacement of Pb^{2+} from the 1–Pb²⁺ complex by Cu^{2+} and the formation of a 1–Cu²⁺ complex. This hypothesis is further validated by the disappearance of the $1-Pb^{2+}$ fluorescence emission peak at 604 nm after addition of Cu^{2+} ions, Fig. S8 (ESI†). The replacement of Pb^{2+} with Cu²⁺ can be attributed to the difference in the atomic radius between Pb^{2+} and Cu^{2+} . Pb²⁺ has a bigger atomic radius and is located at the periphery of the porphyrin chromophore when binding with the metal-free porphyrin 1, whereas Cu^{2+} with a smaller atomic radius can be embedded into the central porphyrin core and form a more stable $1-Cu^{2+}$ system than $1-Pb^{2+}$, resulting in corresponding metal replacement as detailed above. As a consequence, metal-free porphyrin 1 can operate as a dual-mode Cu^{2+} -selective sensor *via* the porphyrin fluorescence ON–OFF mechanism as well as the triple-signal (colorimetric, ratio of A_{414}/A_{466} , and fluorescence ON–OFF) metal displacement from the $1-Pb^{2+}$ complex. Thus, this porphyrin represents a new example of rare dual-mode multi-signal systems for cation recognition,¹⁵ in particular for Cu^{2+} due to its usual paramagnetic fluorescence quenching property.¹⁶

Fig. 3 The fluorescence emission spectra of 1 (2 μ M) in CH₂Cl₂– MeOH (1 : 1) upon addition of increasing amounts (0, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 3, 4, 6, 8, and 10 equiv.) of Cu^{2+} (A), and the electronic absorption spectra and solution color change of 1– Pb^{2+} upon addition of the same amount of Cu^{2+} ion in CH_2Cl_2 –MeOH $(1:1)$ (B). The inset in A shows 1:2 binding stoichiometry between 1 and Cu^{2+} in the 1–Cu²⁺ system using 650 nm fluorescence emission.

In contrast, upon addition of other metal ions, such as Fe^{2+} , Co^{2+} , Hg^{2+} , Mn^{2+} , Zn^{2+} , Ni^{2+} , Cd^{2+} , Ca^{2+} , Ba^{2+} , Mg^{2+} , Li^{+} , Na⁺, or K⁺, the electronic absorption and fluorescent emission spectra of the metal-free porphyrin-1-DPA 1 remained almost

unchanged, Fig. S9–11 (ESI†). Moreover, addition of these metal ions to the $1-Pb^{2+}$ system induces almost no change in either the electron absorption and fluorescent emission spectra, Fig. S8 (ESI†). This is also true for the $1-Cu^{2+}$ system, Fig. S12 (ESI†). These results clearly indicate the excellent selectivity of metal-free porphyrin-1-DPA 1 for Pb^{2+} and Cu^{2+} ions over all the tested metal ions.

For the purpose of comparative studies, the electronic absorption and fluorescent emission properties of porphyrin-4-DPA 2 have been investigated in the same manner as for porphyrin 1. As expected, very similar selectivity and detection properties for Pb^{2+} and Cu^{2+} ions based on the same sensing mechanisms were revealed, Fig. 4A and B and S13–14 (ESI†). However, the quantitative titration experiments for 2 with Pb^{2+} and Cu^{2+} show a binding stoichiometry of 1 : 3 for $2-Pb^{2+}$ and of 1 : 5 for $2-Cu^{2+}$ due to the increase in the number of peripheral DPA units from one for 1 and four for 2, Fig. 4C and D and S15 (ESI†). This suggests that the complexes formed with porphyrin 2 have a different binding mode than the complexes formed with porphyrin 1, as depicted in Fig. 5. Moreover, the observed changes to the optical properties of porphyrin 2 with increasing amounts of Pb^{2+} and Cu^{2+} are smaller in comparison to porphyrin 1. These results clearly indicate the effect of the number of unchanged. Fig. S9-11 (ESI). Moreover, addition of these expiriterial PA and the detection properties of porphyind activation of the control absorption and theorecon mission species. To further under the experiment contin

peripheral DPAs on the detection properties of porphyrin derivatives towards Pb^{2+} and Cu^{2+} cations.

To further understand the sensing properties of these two metal-free porphyrins for Pb^{2+} and Cu^{2+} , control experiments with the reference 1Zn were also carried out under the same experimental conditions. As seen in Fig. S16 (ESI†), addition of

Fig. 5 The proposed coordinating modes of 2 with Pb^{2+} and Cu^{2+} , respectively.

Fig. 4 The electronic absorption spectra (A) and emission spectra (B) of 2 (2 μ M) in CH₂Cl₂–MeOH (1:1) upon addition of K⁺, Li⁺, Cd²⁺, Ni²⁺, Pb^{2+} , Cu^{2+} , Mn^{2+} , Ba^{2+} , Fe^{2+} , Co^{2+} , Mg^{2+} , Ca^{2+} , Ma^{+} , Hg^{2+} , or Zn^{2+} (10 equiv.), respectively. The electronic absorption spectra (C) and fluorescent emission spectra (D) of 2 upon addition of increasing amounts of Pb^{2+} and Cu^{2+} (0, 0.2, 0.4, 0.6, 0.8, 0.9 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2, 4, 6, 8 and 10 equiv.), respectively. The insets of C and D show the 1:3 and 1:5 binding stoichiometry of $2-Pb^{2+}$ and $2-Cu^{2+}$, respectively, at an excitation of 420 nm.

the various metal ions, including Pb^{2+} and Cu^{2+} , into the 1Zn solution does not induce a remarkable spectroscopic response. This suggests the important role of the coordinating ability of the metal-free porphyrin moiety in determining the excellent sensing properties for $Pb^{2+}-Cu^{2+}$. This is further proved by the titration of a N-bis(2-pyridylmethyl)amine (DPA) unit with Pb^{2+} and $Cu²⁺$, which did not show absorption and fluorescence emission in the corresponding optical range. It is worth noting that changes in the optical properties of metal-free 5,10,15,20-tetra- $(4$ -tert-butylphenyl)porphyrin upon addition of Pb²⁺ and Cu^{2+} were similar to those of 1, Fig. S17–18 (ESI†). This clearly indicates that the first binding site of the metal-free porphyrin 1 is the central moiety instead of the DPA side group when coordinating with these two metals. Due to the different characteristic outermost electronic structures of Pb^{2+} and Cu^{2+} , binding of Pb^{2+} with the central four pyrrole nitrogen atoms in 1 induces a corresponding optical-shift, whereas coordinating with Cu^{2+} results in fluorescent quenching of the porphyrin choromophore. This should also be true for 2.

Conclusion

Two metal-free DPA-modified porphyrin derivatives that use the central tetrapyrrole moiety as both the signaling fluorophore and a metal ion receptor have been developed. Significant changes were observed in the solution color, ratio signal of two absorption/fluorescence peaks, and fluorescence intensity of these porphyrin compounds upon their binding with Pb^{2+} and Cu^{2+} . When combined with the optical properties associated with Cu^{2+} displacement from $1/2-Pb^{2+}$ complex, this compound emerges as the first example of a versatile porphyrin-based optical sensor with triple-signal sensing properties for Pb^{2+} and dual-mode fourfold-signaling for Cu^{2+} .

Experimental

Chemicals

Column chromatography was carried out on silica gel (Merck, Kieselgel 60, 70–230 mesh) with the indicated eluents. THF was freshly distilled from CaH₂ under nitrogen. The CH_2Cl_2 and methanol used as solvents for the spectral experiments were purified via standard methods. Other reagents and solvents were used as received. The compounds of 5-(4-carboxylphenyl)- 10,15,20-tris(4-tert-butylphenyl)porphyrin (3) 5,10,15,20-tetra- (4-cyanophenyl)porphyrin (4) and 5,10,15,20-tetra(4-carboxylphenyl) porphyrin (5) were prepared according to literature procedures.11–¹²

General instruments

¹H and ¹³C NMR spectra (¹H-400 MHz and ¹³C-100 MHz) were recorded on a Bruker DPX 400 MHz spectrometer in CDCl₃ with shifts referenced to SiMe_4 (0.00 ppm). MALDI-TOF mass spectra were measured on a Bruker BIFLEX III ultra-high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with alpha-cyano-4-hydroxycinnamic acid as the matrix. Elemental analyses were performed on an Elementar

Vario El #xX_CYR_HEX_428;. Electronic absorption spectra were recorded on a U-4100 spectrophotometer. Steady-state fluorescence spectroscopic studies were performed on an F 4500 (Hitachi). The slit width was 5 nm for emission. The photon multiplier voltage was 700 V.

Preparation of 5-[p-N,N-bis(2-pyridylmethyl)amino-phenyl]- 10,15,20-tris (4-tert-butylphenyl)porphyrin (1)

A mixture of compound 3 (83 mg, 0.1 mmol) and thionyl chloride (10 mL) was refluxed for 5 h under $N₂$ atmosphere and evaporated by atmospheric distillation. The residue obtained was dissolved in THF (8 mL) and then added into a solution of DPA (100 mg, 0.5 mmol) in THF (5 mL), followed by adding two drops of TEA. After stirring for another 4 h at 50 °C, the resulting black–green mixture was evaporated under reduced pressure. The residue was chromatographed on a silica gel column using $CHCl₃$ –MeOH (98 : 2) as the eluent, where the second fraction was collected and evaporated. Repeated chromatography followed by recrystallization from $CHCl₃$ and MeOH gave compound 1, 47 mg in the yield of 46%. ¹H NMR (CDCl₃, 400 MHz) δ 8.88 (d, 6H, $J = 8$ Hz), 8.78 (d, 2H $J = 4$ Hz), 8.69 (d, 1H, $J = 4$ Hz), 8.62 (br, 1H), 8.23 (d, 2H $J = 8$ Hz), 8.15 (m, 6H, $J = 8$ Hz), 7.99 (d, 2H, $J = 8$ Hz), 7.77 (d, 8H $J = 8$ Hz), 7.62 (d, 1H, $J = 8$ Hz), 7.42 (d, 1H, $J = 12$ Hz), 7.26 (2H) obscured by the strong residual CHCl₃ signal), 5.08 (d, 4H, $J =$ 4 Hz), 1.61(s, 27H), −2.80 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 172.7, 156.8, 150.5, 150.1, 145.5, 144.1, 139.1, 136.9, 135.1, 125.6, 123.7, 122.7, 122.5, 121.6, 120.6, 120.4, 118.5, 54.9, 50.9, 34.9, 31.7; MS (MALDI-TOF): an isotopic cluster peaking at m/z 1008.49, [Calcd For M⁺ 1008.53]; Anal. Calcd (%) for $C_{69}H_{65}N_7O$: C, 82.19; H, 6.50; N, 9.72. Found: C, 82.46; H, 6.60; N, 9.34. Download is an including Po² and Ca², into the **IZa** View El #XX_CYR, HEX_428;. Electronic absorption accousing and the integrants that of the coordinary ability of the coordinary continued by the energy explores incr

Preparation of 5-[p-N,N-bis(2-pyridylmethyl)amino-phenyl]- 10,15,20-tris (4-tert-butylphenyl)porphyrinato Zinc complex (1Zn)

 $Zn(OAc)$, $2H_2O$ (33 mg, 0.15 mmol) in MeOH (5 mL) was added into a mixed solution of $5-[p-N,N-bis (2-pyridylmethyl)]$ amino-phenyl]-10,15,20-tris(4-tert-butylphenyl) porphyrin (1) (100 mg, 0.1 mmol) in CHCl₃–MeOH $(3:1)$ (30 mL). The reaction mixture was refluxed for 3 h under N_2 atmosphere and then diluted with CH_2Cl_2 (50 mL). After washing the resulting mixture with an aqueous solution (100 mL) containing EDTA (1 g) and Na_2CO_3 (8 g), the organic phase was dried over anhydrous MgSO4, filtered, and evaporated. The residue was chromatographed on a silica gel column using $CHCl₃–MeOH (98:2)$ as the eluent. Repeated chromatography followed by recrystallization from CHCl₃ and MeOH gave compound $1Zn$, 41 mg in the yield of 38%. ¹H NMR (CDCl₃-[D₅]pyridine(9:1), 400 MHz) δ 8.77 (d, 5H, $J = 8$ Hz), 8.65 (d, 2H $J = 4$ Hz), 8.48 (br, 1H), 8.43 (d, 1H, $J = 4$ Hz), 8.03 (d, 2H $J = 8$ Hz), 7.96 (d, 5H, $J = 8$ Hz), 7.80 (d, 2H, $J = 8$ Hz), 7.56 (d, 8H $J = 8$ Hz), 7.44 (d, 1H, $J = 4$ Hz), 7.26 (1H obscured by the strong residual CHCl₃ signal), 7.19 (d, 2H, $J = 8$ Hz), 7.06 (2H, partly overlapped), 4.92 (d, 4H, $J = 8$ Hz), 1.41(s, 27H); ¹³C NMR (100 MHz, CDCl₃-[D₅]pyridine(9:1) δ 172.4, 149.8, 149.7,

149.4, 144.9, 139.9, 136.4, 134.1, 131.5, 131.3, 130.7, 124.8, 123.2, 122.1, 121.9, 121.2, 120.6, 120.3, 118.5, 54.4, 50.3, 34.3, 31.2, 29.2; MS (MALDI-TOF): an isotopic cluster peaking at m/z 1070.31, [Calcd For M⁺ 1070.44]; Anal. Calcd (%) for C69H63N7OZn: C, 78.52; H, 6.02; N, 7.85. Found: C, 78.46; H, 6.36; N, 7.34.

Preparation of 5,10,15,20-tetra[p-N,N-bis(2-pyridylmethyl) amino-phenyl] porphyrin (2)

The above procedure was used to prepare compound 2 by substituting 5,10,15,20-tetra(4-carboxylphenyl)porphyrin (5) (79 mg, 0.1 mmol) for 5-(4-carboxylphenyl)-10,15,20-tris(4-tert-butylphenyl)porphyrin (3) as the starting material. Compound 2 (42 mg) was obtained with the yield of 27% . ¹H NMR (CDCl₃, 400 MHz) δ 8.79 (s, 8H), 8.69 (d, 4H, $J = 4$ Hz), 8.63 (d, 4H, J $= 4$ Hz), 8.19 (d, 8H, $J = 8$ Hz), 7.99 (d, 8H $J = 8$ Hz), 7.79 (t, 8H, $J = 16$ Hz), 7.61 (d, 4H, $J = 8$ Hz), 7.42 (d, 4H $J = 8$ Hz), 7.28 (4H, obscured by the strong residual CHCl₃ signal), 5.07 (s, 16H), -2.92 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 157.1, 156.7, 150.1, 149.4, 143.5, 136.9, 135.3, 134.4, 125.7, 122.6, 122.4, 121.7, 119.4, 54.9, 50.9; MS (MALDI-TOF): an isotopic cluster peaking at m/z 1517.12, [Calcd For M⁺ 1517.61]; Anal. Calcd for $C_{96}H_{74}N_{16}O_4$: C, 76.07; H, 4.92; N, 14.79. Found: C, 76.35; H, 5.20; N, 14.52. 149.4. 1449, 139.9. 1364, 134.1, 131.5, 131.3, 130.7, 1248. Notes and references

123.2, 122.1, 121.9, 121.2, 120.6, 120.5, 131.3, 130.4, 130.3, 244, 50.3, 245, 30.3, 245, 200, 202, 132.2, 132.2, 132.2, 132.2, 132.2, 132.

Spectroscopic response experiments

Stock methanol solutions (1 mM) of Hg^{2+} , Mn^{2+} , Cd^{2+} , Ca^{2+} Ba^{2+} , Mg^{2+} , Li^{+} , Na^{+} , and K^{+} were prepared from their chloride salts, solutions of Co^{2+} , Cu^{2+} , Zn^{2+} , and Ni^{2+} from their acetate salts, the solution of Pb^{2+} from the nitrate salt, and the solution of Fe^{2+} from ferrous ammonium sulfate and used immediately. Solutions of 1, 2 or 1Zn (0.2 mM) in CH_2Cl_2 were prepared. Test solutions were prepared by placing 0.1 ml of the probe's stock solutions into a test tube, adding an appropriate aliquot of each metal stock solution and then vaporizing the solvents off, followed by diluting the obtained mixture with CH_2Cl_2 –MeOH $(1:1, 10 \text{ ml})$ to give the final concentration. After complete mixing for 5 h, UV–vis absorption and fluorescent emission measurements were carried out with a 1 cm standard quartz cell.

Acknowledgements

Financial support from the Natural Science Foundation of China, Ministry of Education of China, and the Fundamental Research Funds for the Central Universities, the Beijing Municipal Commission of Education, the Fundamental Research Funds for the Central Universities, and the University of Science and Technology Beijing is gratefully acknowledged.

Notes and references

- 1 (a) M. C. Y. Chang, A. Pralle, E. Y. Chang and C. J. Isacoff, J. Am. Chem. Soc., 2004, 126, 15392–15393; (b) J. Han and K. Burgess, Chem. Rev., 2010, 110, 2709–2728; (c) B. Valeur and I. Leray, Coord. Chem. Rev., 2000, 205, 3–40; (d) X. Zhang, Y. Xiao and X. Qian, Angew. Chem., Int. Ed., 2008, 47, 8025–8029; (e) J. Han, A. Loudet, R. Barhoumi, R. C. Burghardt and K. Burgess, J. Am. Chem. Soc., 2009, 131, 1642–1643; (f) Q. He, E. W. Miller, A. P. Wong and C. J. Chang, J. Am. Chem. Soc., 2006, 128, 9316–9317; (g) H. X. Wang, D. L. Wang, Q. Li, X. Y. Wang and C. A. Schalley, Org. Biomol. Chem., 2010, 8, 1017–1026.
- 2 (a) S. C. Dodani, Q. He and C. J. Chang, J. Am. Chem. Soc., 2009, 131, 18020–18021; (b) H. Takakusa, K. KiKuchi, Y. Urano, S. Sakamoto, K. Yamaguchi and T. Nagano, J. Am. Chem. Soc., 2002, 124, 1653– 1657; (c) D. Srikun, S. E. Miller, D. W. Domaille and C. J. Chang, J. Am. Chem. Soc., 2008, 130, 4596–4597; (d) J. Wang and X. Qian, Chem. Commun., 2006, 109–111; (e) Q. He, E. W. Miller, A. P. Wong and C. J. Chang, J. Am. Chem. Soc., 2006, 128, 9316–9317; (f) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891–4932.
- 3 (a) K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano and T. Nagano, J. Am. Chem. Soc., 2005, 127, 10197–10204; (b) L. Zhang, R. J. Clark and L. Zhu, Chem.–Eur. J., 2008, 14, 2894–2903; (c) E. M. Nolan, J. W. Ryu, J. Jaworski, R. P. Feazell, M. Sheng and S. J. Lippard, J. Am. Chem. Soc., 2006, 128, 15517–15528; (d) K. Hanaoka, K. Kikuchi, H. Kojima, Y. Urano and T. Nagano, J. Am. Chem. Soc., 2004, 126, 12470–12476; (e) Z. Lin, X. Li and H. Kraatz, Anal. Chem., 2011, 83, 6896–6901.
- 4 (a) L. Xue, C. Liu and H. Jiang, Org. Lett., 2009, 11, 1655–1658; (b) L. Xue, Q. Liu and H. Jiang, Org. Lett., 2009, 11, 3454–3457.
- 5 O. A. Bozdemir, R. Guliyev, O. Buyukcakir, S. Selcuk, S. Kolemen, G. Gulseren, T. Nalbantoglu, H. Boyaci and E. U. Akkaya, J. Am. Chem. Soc., 2010, 132, 8029-8036.
- 6 H. Komatsu, D. Citterio, Y. Fujiwara, K. Minamihashi, Y. Araki, M. Hagiwara and K. Suzuki, Org. Lett., 2005, 7, 2857–2859.
- 7 Z. Wu, Y. Zhang, J. S. Ma and G. Yang, Inorg. Chem., 2006, 45, 3140– 3142.
- 8 Y. Chen, L. Wan, W. Li, Y. Bian and J. Jiang, Org. Lett., 2011, 13, 2857– 2859.
- 9 (a) J. F. Zhang, Y. Zhou, J. Yoon, Y. Kim, S. J. Kim and J. S. Kim, Org. Lett., 2010, 12, 3852-3855; (b) K. Okamoto and S. Fukuzumi, J. Am. Chem. Soc., 2004, 126, 13922–13923.
- 10 (a) C. Li, X. Zhang, L. Qiao, Y. Zhao, C. He, S. Huan, L. Lu, L. Jian, G. Shen and R. Yu, Anal. Chem., 2009, 81, 9993–10001; (b) Y. Weng, F. Yue, Y. Zhong and B. Ye, Inorg. Chem., 2007, 46, 7749–7755.
- 11 (a) X. Y. Zhang, Y. Li, D. D. Qi, J. Z. Jiang, X. Z. Yan and Y. Z. Bian, J. Phys. Chem. B, 2010, 114, 13143–13151; (b) Y. Gao, X. Zhang, C. Ma, X. Li and J. Jiang, J. Am. Chem. Soc., 2008, 130, 17044–17052.
- 12 (a) P. J. F. Gauuan, M. P. Trova, L. Gregor-Boros, S. B. Bocckino, J. D. Crapoc and B. J. Day, Bioorg. Med. Chem., 2002, 10, 3013–3021; (b) T. Giust, D. Gianferrara, I. Bratsos and E. Alessio, Tetrahedron, 2007, 63, 5006–5013.
- 13 Detection limit (DL) is defined as the concentration corresponding to a signal 3 times the noise level of the background. $DL = (0.03 \times RSDB)/$ $(x_A/c₀)$, where RSDB is both the relative standard deviation of the background expressed as a percent and the sensitivity (the slope of the calibration curve of intensity versus composition, x_A is the net analyte signal (*i.e.*, the signal above background), and c_0 is the composition of the element in the sample.
- 14 (a) J. Li and Y. Lu, J. Am. Chem. Soc., 2000, 122, 10466–1046; (b) C. Chen and W. Huang, J. Am. Chem. Soc., 2002, 124, 6246-6247; (c) J. Y. Kwon, Y. J. Jang, Y. J. Lee, K. M. Kim, M. S. Seo, W. Nam and J. Yoon, J. Am. Chem. Soc., 2005, 127, 10107–10111.
- 15 M. Royzen, Z. Dai and J. W. Canary, J. Am. Chem. Soc., 2005, 127, 1612–1613.
- 16 X. Ni, S. Wang, X. Zeng, Z. Tao and T. Yamato, Org. Lett., 2011, 13, 552–555.